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LETTER TO THE EDITOR 
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Abstract. The resistance of two quantum point contacts (QPCS) in series is investigated 
experimentally. The voltage is measu_red both across and in between the series pair. The 
normalised transmission coefficient. T,  for ballistic transport is determined from the data 
using simple theory. Tvaries between 0.: and 1 .O depending on the number of conducting 
ID channels through each point contact. Tis always found to be a minimum value when the 
number of ID channels in each QPC is the same. 

The conductance of a single quantum point contact (QPC) is known to be quantised 
approximately in units of 2e2/h. The conductance is given by N(2e2/h) where N is the 
number of one-dimensional conducting channels in the contact. This remarkable result 
was discovered independently by two groups [ 1,2]. It is important because it provides 
direct evidence for the existence of one-dimensional states when a two-dimensional 
electron gas ( ~ D E G )  is laterally confined and also because the quantisation can occur in 
zero magnetic field. An equally interesting result was also discussed by Wharam and co- 
workers [3]  who presented evidence that the total resistances of two QPCS in series was 
not the sum of the individual resistances but was the larger of the two resistances. They 
considered this to be the case even when the two QPCS were separated by a region of 
unrestricted ZDEG. The interpretation of this result involves the idea of adiabatic trans- 
port in which the electrons from the first point contact traverse the ~ D E G  region while 
preserving their one-dimensional quantum numbers. An equivalent description is that 
the transmission probability to the second QPC for an electron emerging from the first 
QPC is unity. Such adiabatic transport has been definitely observed by van Wees and co- 
workers [4] in high magnetic fields ( B  > 2.1 r).  However, in their experiment, the 
situation was somewhat different because the magnetic field was sufficiently high that 
Landau levels were well established in the bulk material and transport through the 
QPCS was via edge states that were automatically collimated. The adiabatic transport 
hypothesis has been considered in more detail theoretically by Beenakker and van 
Houten [ 5 ] .  They predict that the total resistance of a series pair of QPCS will depend in 
a quite complicated fashion on the detailed shape of the confinement potentials. Only 
in very special cases, with a high degree of collimation of the electrons, do they predict 
that adiabatic transport will occur in zero magnetic field. We present, in this Letter, a 
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1- Figure 1. A schematic diagram of the gates, label- 
led a, b, c and d, and the electrical contacts used 
in the experiment. Opposite gates are 0.48 pm 
apart. 
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set of experiments on two QPCS in series in which we are able to measure not only the 
total voltage drop across the two QPCS but also the intermediate voltage between them. 
By using the Landauer-Biittiker [6,7] formula we are able to translate these voltages 
into a transmission coefficient for ballistic transport. Beenakker and van Houten [5] 
have considered theoretically a similar situation and calculate the voltage across a pair 
of identical QPCS. However, they do not consider the intermediate voltage. 

The central region of our structure is shown schematically in figure 1. The ~ D E G  is 
formed in an n-type GaAs/(AlGa)As heterostructure with a carrier concentration of 
3.4 x 1015 m-* and mobility at 4.2 Kof approximately 100 m2 V-'s-l after illumination, 
corresponding to an elastic mean free path of -10 pm. 

The independently variable gates are fabricated by electron beam lithography and 
lift-off techniques from Ti/Au. The lithographic width of each gate is 0.15 pm and the 
distance between the ends of opposite gates is 0.48 pm. 

We label the four gates a ,  b,  c, d and the four ~ D E G  regions A ,  B, C, D as illustrated. 
Each of the ZDEG regions has two ohmic contacts (Au/Ge/Ni). We use the notation that 
the QPC formed by applying the same negative voltage V,(ab) to gates a and b (and no 
bias to the other pair of gates) has a conductance Gab etc. Measurements were made at 
a temperature of 70 mK using a four-wire resistance bridge with 30 pV excitation. 

A typical variation of (Gcd)-' with gate voltage is shown in the lowest curve (curve 
A) of figure 2. Equivalent curves are found for all pairs of gates. Assuming that the 
Fermi wavelength AF in the channel is unaffected by gate voltage, we can estimate the 
channel width using the relation w = NAF/2. The gate voltages at which the quantised 
steps occur then provide the width, wij, of the channel defined by gates i and j according 
to the following relation: 

wij (nm) = 210(*5) V,(V) + 410(t10) v, 0 ,  
where V,  is the applied gate voltage. Since the channels only begin to be defined for 
V, < - 1 V, the maximum channel widths compare reasonably well with the lithographic 
width. The width w a d ,  however, does not obey this formula. Instead, 

w a d  (nm) = 138 V, (V) + 400 

although again the channel begins to be defined at < - 1 V. Presumably this difference 
is due to some artefact of fabrication. However, it turns out to be a fortunate accident 
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Figure 2. Series resistance, R;, as a func- 
tion of the gate voltage applied to gates c 
and d.  The gate voltage on a and b is held 
constant at 0 V (curve A), -1.61 V (curve 
B) and -1.77 V (curve C). Curve A also 
corresponds to G& since a and b are unbi- 
assed. 

Figure3. R ,, R,and R,plottedas a function 
of the gate voltage on c and d with the 
voltage on gates a and b held constant at 
-1.77V. CurveA, R,;curveB, R,,curve 
C, R3. Each resistance plateau in Rz is 
labelled by Ncd = (h/2e2)G,,. 

in that for most of the measurements we pass the current between B and D and we are 
able to use A as the intermediate voltage contact. Even when Gab and Gcd are pinched 
off, Gad will be open. 

In curves B and C of figure 2, we show the resistance of a series pair of QPCS. For 
each of these curves the bias on gates c and d is varied while the bias on gates a and b is 
held constant at 0 V in curve A, - 1.6 V in curve B, and - 1.77 V in curve C. We define 
the series resistance as R3 = (VB - VD)/Z where the current is flowing between regions 
B and D. The lowest curve, therefore, is the resistance of the QPC defined by c and d 
with no other constraint. Since the gates do not begin to pinch-off until the gate voltage 
Vg < -1 V, the series resistance of the pair for gate voltage between -1 V and 0 V is 
determined entirely by Gab for the other curves. Figure 2 shows very clearly that there 
is a substantial but not complete ballistic contribution to the series resistance. 

The extra flexibility of the measurement of the intermediate voltage is illustrated in 
figure 3. Here we plot three resistances; R1 defined as (V, - VA)/Z, R2 defined as 
(V, -VD)Z and R3,  the series resistance, is (VB - VD)/Z, In each case the current, I ,  is 
passing between B and D. The conditions for figure 3 are that the bias on gates a and b 
is held constant at -1.77 V so that G,-d = 6493 S2, only 1% larger than the quantised 
value, h/4e2. Then the bias on gates c and d is swept. Classically R1 would be the 
(constant) resistance G,-d , R2 would be GG1 and R3 = G,-d + GG1. This is clearly not 
the case in our experiment, and is illustrated most emphatically by R I  fulling as the 
increasingly negative bias applied to gates c and d starts to narrow the c-d channel. The 
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plateaux which occur in R1, R2 and R3 are clear but not at quantised values. This 
behaviour can be understood by a simple analysis of the experiment in terms of a 
transmission coefficient for ballistic transport. 

We define the three conductances G1 = R;', G2 = R;' and G3 = RT1. Then it fol- 
lows that 

G1 = ez/(PB - P A )  G2 = el/(PA - PD) G3 = el/(pB - PD). (1) 
where p, is the chemical potential in the region a ( a  = A, B, C or D). Following 
Beenakker and van Houten [5]  we apply the Biittiker formula [6] for the current I ,  in 
the lead a with N ,  quantum channels, 

where R ,  and Tpn are related to the reflection coefficient back into the reservoir a and 
the transmission coefficient from reservoir p to reservoir a respectively. In the simple 
case of two terminals, we can take pj3  = 0 and equation (2) reduces to 

Gab = eZ,/p, = (2e2/h)(N, - R,) 2= (2e2/h)N (3) 
which is the approximate quantisation obtained for a single QPC, with Nan integer. 

Foi the situation with two QPCS in series, we define for convenience pA = 0. Noting 
that Gab and Gcd as previously defined are equivalent to GAB and GAD in the formalism 
of (3), we obtain from (2) 

0 = - TDAPD - TBAPB (4c) 

where we have taken A to be a voltage contact with the current flowing between B and 
D. T is proportional to the direct, ballistic, transmission probability through both 
channels. TDA and TBA are proportional to the transmission probabilities for electrons 
scattering from D and B respectively into the ~ D E G  region between the two QPCs. 
Normalisation of transmission probabilities gives 

T + TBA = (h/2e2)Gab 

T + TDA = (h/2e2)GCd 

(2e2/h)T = Min (Gai, Gcd). 

(5a) 

(5b) 

(6) 

where, for totally adiabatic transport only 

Equation (6) ensures that in the pure ballistic case the total conductance is governed by 
the smaller of the two conductances. Simple manipulation of equations (4) and ( 5 )  gives 

G1 = Gab + (2e2/h)T[Gab - (2e2/h)T]/[Gcd - (2e2/h)T] 

G2 = Gcd -I- (2e2/h)T[Gcd - (2e2/h)T]/[Gab - (2e2/h)T] 

G3 = [GabGcd - (2e2/h>2T2]/[(Gab + Gcd - 2(2e2/h)T)1* 

(7a) 

(7b) 

(7c) 
For the pure ballistic case, with T defined by equation (6), we obtain for Gab < Gcd, 

obtain G1 = 03, G2 = Gcd = G3 (or R1 = 0, R2 = R3 = Rcd). In the total absence of 
GI = Gab, G2 = a and G3 = Gab (or R I =  Rab, R2 = O and R3 = Rat,). For Gab > Gcd W e  
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ballistic transport between B and D, T =  0 and GI = Gab, G2 = Gcd and 
G3 = GabGcd/(Gab f Gcd), or R1 = R a b ,  R2 = Rcd and the Classical addition Of resistance, 
R3 = R I  f R,  is obtained. 

For Gab = Gcd, equation (7c) reduces to 

G3 = [Gab f (2e2/h)T]/2 (8) 

which is the result obtained by Beenakker and van Houten [5]  for the series resistance 
of two identical QPCs. 

Note that from equations (7a) and (7b) 

(GI - Gab)(G2 - Gcd) = (2e* / /~ )~T* .  (9) 

We have calculated values of Tfrom series of traces such as those shown in figure 3. For 
each set, the bias on gates a and b is held constant at some value corresponding to a 
quantised value of Gab. The voltage on c and d is then varied between 0 and pinch-off. 
T has the value 0 for classical series resistance and is defined by equation (6) for the 
ballistic case. For direct comparison between different configurations we define the 
normalised transmission coefficient 

T =  (2e2/h)T/[Min(Gab, Gcd)] (10) 
which has the property T = 0 (classical) and T = 1 (ballistic). 

Values of Tcan be obtained using equation (7) or equation (9). We find that equations 
(7c) and (9) give far more consistent and reproducible results than equations (7a) and 
(7b). In almost all cases thevaluescalculated from (7c) and (9) agree within experimental 
uncertainty. The interpretation of the data using equations (7a) and (7b) is not so 
successful. In some cases the measured values of G I  and G2 are ‘impossible’, i.e. it is not 
possible to fit equations (7a) or (7b) with any value of T. 

The procedure for calculating T i s  as follows. For each set of traces (for example 
those shown in figure 3) we first identify the plateaux. Gab is fixed and is therefore known 
so the plateaux correspond to the quantised resistance steps in Gcd. In figure 3 
G,-d = 6493 52 and we identify the plateaux as shown. We then take the value of Gcd to 
be the value of the quantised resistance corresponding to each plateau. Thus, for the 
first plateau we take G,-b = 12909 51 etc. We do not expect this to introduce errorslarger 
than -1% in the value of Gcd. We assume that the variation of the gate bias on c and d 
has no effect on Gab. This assumption is corroborated by the observation that the 
plateaux in figure 3 occur at the same values of the gate voltage on c and d and when the 
bias on a and b is zero. 

In table 1 we show the values of Tin terms of the conductances Gab and Gcd expressed 
as the number of conducting 1~ channels in each QPC. For example, if Nab = 
2 then Gab = 2(2e2/h). We note two interesting points: 

(i) the transmission coefficient is symmetric with respect to the two QPCS. For 
example, if N a b  = 1 and Ncd = 4, the transmission coefficient is the same as for Nab = 4 
and Ncd = 1. This illustrates the symmetry of these gate pairs and shows that the two 
QpCs are behaving in a very similar fashion. 

(ii) ?‘is always a minimum when Nab = Ncd = No. This is illustrated in figure 4 where 
N a b  = 3. Tisplotted against Ned. There is aclear minimumforNcd = 3. Similar behaviour 
is also shown in figure 4 for Nab = 4 and occurs for all values of N. There is no strong 
systematic variation of ?’ with No, though there may be a trend that T is smaller as No 
becomes smaller. This appears to contradict the prediction of Beenakker and van 
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Table 1. The normalised transmission coefficient, ?., for various values of N a b  and Ned. 

Nab Ncd T(error: t 5 % )  Nab Ncd T(error: 2 5%) 
_ _ _ _ _ _ ~ ~ ~  

1 1 0.52 
1 2 0.73 
1 3 0.80 
1 4 1.00 
2 1 0.76 
2 2 0.49 
2 3 0.75 
2 4 0.78 
2 5 0.80 
2 6 0.83 
2 7 0.80 
3 1 0.80 

3 2 0.68 
3 3 0.66 
3 4 0.68 
3 5 0.74 
3 6 0.78 
3 7 0.84 
4 1 1 .oo 
4 2 0.80 
4 3 0.67 
4 4 0.61 
4 5 0.69 
4 6 0.79 

0 9  L(bf 

0 6  
Figure 4. The normalised transmission coef- 

2 4 6 ficient, T ,  plotted against Ncd with fixed ( a )  Nab = 
3 and (b )  Nab = 4. The lines are guides to the eye. 

::I , , 1 
Nc 3 

Houten [SI that T should increase, for a given gate geometry, as the channel becomes 
narrower. Also our numerical values for Tin the case of Nab = Ncd are much lower than 
they predict for our geometry. For our sample geometry they predict T -  to be between 
0.9 and 1 always, in contrast to the observed values. 

To summarise, we have measured the resistance of two QPCS in series. We find that 
there is a substantial degree of adiabatic ballistic transport and by employing a simple 
model we are able to calculate a value for the ballistic transmission coefficient, r ,  
between the two contacts. This varies between 0.5 and 1 .O for our sample geometry. We 
are certain that the two QPCS remain distinct since we are able to measure the intermediate 
voltage between them. The minimum values of T always occur when the conductances 
of the two QPCS are equal. This result is intuitively plausible and consistent with a 
diffracting wave picture, but it is more difficult to interpret with ballistic trajectories. 

This work is supported by the SERC. 
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